1.         Peterka, T., et al., Formalized classification of European fen vegetation at the alliance level. Applied Vegetation Science, 2017. 20(1): p. 124-142.

2.         Joosten, H., F. Tanneberger, and A. Moen, Mires and peatlands of Europe. 2017, Stuttgart: Schweizerbart Science Publishers. 780.

3.         Chytry, M., et al., EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats. Applied Vegetation Science, 2020. 23(4): p. 648-675.

4.         Konvalinkova, P. and K. Prach, Environmental factors determining spontaneous recovery of industrially mined peat bogs: A multi-site analysis. Ecological Engineering, 2014. 69: p. 38-45.

5.         Singh, P., et al., Restoration of rare bryophytes in degraded rich fens: The effect of sod-and-moss removal. Journal for Nature Conservation, 2021. 59: p. 125928.

6.         Rydin, H. and J.K. Jeglum, The Biology of Peatlands, second edition. 2013, Oxford: Oxford University Press. 398.

7.         Navratilova, J., et al., Convergence and impoverishment of fen communities in a eutrophicated agricultural landscape of the Czech Republic. Applied Vegetation Science, 2017. 20(2): p. 225-235.

8.         Hajek, M., et al., Changes in the moss layer in Czech fens indicate early succession triggered by nutrient enrichment. Preslia, 2015. 87(3): p. 279-301.

9.         Crowley, K.F. and B.L. Bedford, Mosses influence phosphorus cycling in rich fens by driving redox conditions in shallow soils. Oecologia, 2011. 167(1): p. 253-264.

10.       Hajkova, P. and M. Hajek, Bryophyte and vascular plant responses to base-richness and water level gradients in Western Carpathian Sphagnum-rich mires. Folia Geobotanica, 2004. 39(4): p. 335-351.

11.       Singh, P., et al., The ratio between bryophyte functional groups impacts vascular plants in rich fens. Applied Vegetation Science, 2019. 22(4): p. 494-507.

12.       Gilbert, D. and E.A.D. Mitchell, Microbial diversity in Sphagnum peatlands. 2006, Elsevier Science Bv: Amsterdam. p. 287-318.

13.       Mitchell, E.A.D., et al., Relationships among testate amoebae (Protozoa), vegetation and water chemistry in five Sphagnum-dominated peatlands in Europe. New Phytologist, 2000. 145(1): p. 95-106.

14.       Jirousek, M., et al., Long-term and contemporary environmental conditions as determinants of the species composition of bog organisms. Freshwater Biology, 2013. 58(10): p. 2196-2207.

15.       Strobl, K., C. Moning, and J. Kollmann, Positive trends in plant, dragonfly, and butterfly diversity of rewetted montane peatlands. Restoration Ecology, 2020. 28(4): p. 796-806.

16.       Vitovcova, K., et al., Vegetation succession in formerly mined peatbogs and how do other groups of organisms respond? . Wetlands Ecology and Management, submitted.

17.       Horsakova, V., et al., Principal factors controlling the species richness of European fens differ between habitat specialists and matrix-derived species. Diversity and Distributions, 2018. 24(6): p. 742-754.

18.       Horsak, M., et al., Spring-fen habitat islands in a warming climate: Partitioning the effects of mesoclimate air and water temperature on aquatic and terrestrial biota. Science of the Total Environment, 2018. 634: p. 355-365.

19.       Hajkova, P., et al., Disentangling the effects of water chemistry and substratum structure on moss-dwelling unicellular and multicellular micro-organisms in spring-fens. Journal of Limnology, 2011. 70: p. 54-64.

20.       Tahvanainen, T., Abrupt ombrotrophication of a boreal aapa mire triggered by hydrological disturbance in the catchment. Journal of Ecology, 2011. 99(2): p. 404-415.

21.       Tolasz, R., Atlas podnebí Česka / Climate atlas of Czechia. 2007, Praha: Cesky hydrometeorologicky ustav. 255.

22.       Navratilova, J., J. Navratil, and M. Hajek, Relationships between environmental factors and vegetation in nutrient-enriched fens at fishpond margins. Folia Geobotanica, 2006. 41(4): p. 353-376.

23.       Morgan, J.L., S.E. Gergel, and N.C. Coops, Aerial Photography: A Rapidly Evolving Tool for Ecological Management. Bioscience, 2010. 60(1): p. 47-59.

24.       Spitzer, K., Biogeographical and ecological determinants of the central European peat bogLepidoptera: The habitat island approach conservation. Nota Lepidopterologica, 1994. 5: p. 253-263.

25.       Itescu, Y., Are island-like systems biologically similar to islands? A review of the evidence. Ecography, 2019. 42(7): p. 1298-1314.

26.       Ottaviani, G., et al., Linking Plant Functional Ecology to Island Biogeography. Trends in Plant Science, 2020. 25(4): p. 329-339.

27.       Gibbs, J.P., M.L.J. Hunster, and E.J. Sterling, Problem-Solving in Conservation BIology and Wildlife Management. 2008, Oxford: Blackwell Publishing Ltd. . 344.

28.       Kooijman, A.M. and C. Bakker, The acidification capacity of wetland bryophytes as influenced by simulated clean and polluted rain. Aquatic Botany, 1994. 48(2): p. 133-144.

29.       Vitt, D.H., Peatlands: ecosystems dominated by bryophytes. 2000, Cambridge: Cambridge University Press. 312-343.

30.       Clyno, R.S. and P.M. Hayward, The ecology of Sphagnum. 1982, Springer Nature: Dordrecht. p. 229-289.

31.       Kent, M. and P. Coker, Vegetation Description and Analysis. 1992, London: Belhaven Press.

32.       Birks, H.H., The Late-Quaternary history of arctic and alpine plants. Plant Ecology & Diversity, 2008. 1(2): p. 135-146.

33.       Berglund, B.E., HANDBOOK OF HOLOCENE PALEOECOLOGY AND PALAEOHYDROLOGY. Science. 1986, Chichester: John Wiley and Sons. 883.

34.       Mann, D.G., The species concept in diatoms. Phycologia, 1999. 38(6): p. 437-495.

35.       Payne, R.J., Seven Reasons Why Protists Make Useful Bioindicators. Acta Protozoologica, 2013. 52(3): p. 105-113.

36.       Smol, J.P. and E.F. Stoermer, The diatoms: Applications for the Environmental and Earth Sciences. 2010, Crambridge: Cambridge University Press. 686.

37.       Fawley, M.W. and K.P. Fawley, Identification of eukaryotic microalgal strains. Journal of Applied Phycology, 2020. 32(5): p. 2699-2709.

38.       Vasutova, M., M. Jirousek, and M. Hajek, High fungal substrate specificity limits the utility of environmental DNA to detect fungal diversity in bogs. Ecological Indicators, 2021. 121.

39.       Crowther, T.W., et al., Top-down control of soil fungal community composition by a globally distributed keystone consumer. Ecology, 2013. 94(11): p. 2518-2528.

40.       Vasutova, M., et al., Taxi drivers: the role of animals in transporting mycorrhizal fungi. Mycorrhiza, 2019. 29(5): p. 413-434.

41.       Xue, D., et al., Fungi are more sensitive than bacteria to drainage in the peatlands of the Zoige Plateau. Ecological Indicators, 2021. 124.

42.       Hofmeister, J. and J. Hošek, Seznamy indikačních druhů živočichů a hub pro jednotlivé typy přírodních stanovišť podle Katalogu biotopů ČR. Ekologicke sluzby s. r. o., 2016: p. 386.

43.       New, T.R., Are Lepidoptera an effective 'umbrella group' for biodiversity conservation? Journal of Insect Conservation, 1997. 1(1): p. 5-12.

44.       Fleishman, E., et al., Using indicator species to predict species richness of multiple taxonomic groups. Conservation Biology, 2005. 19(4): p. 1125-1137.

45.       Spitzer, K. and H.V. Danks, Insect biodiversity of boreal peat bogs. Annual Review of Entomology, 2006. 51: p. 137-161.

46.       Jaros, J., K. Spitzer, and H. Zikmundova, Variability of Lepidoptera communities (moths and butterflies) along an altitudinal gradient of peat bogs from the Třeboň Basin up to the Bohemian Forest (South Bohemia, Central Europe). Silva Gabreta, 2014. 20: p. 55-95.

47.       Peus, F., Beitrage zur Kenntnis der Tierwelt nordwestdeutscher Hochmoore. Eine okologische Studie. Insecten, Spinnentiere, Wirbeltiere. Zeitschrift für Morphologie der Tiere, 1928. 12: p. 533-683.

48.       Spitzer, K., A. Bezdek, and J. Jaros, Ecological succession of a relict Central European peat bog and variability of its insect biodiversity. Journal of Insect Conservation, 1999. 3(2): p. 97-106.

49.       Bezdek, A., J. Jaros, and K. Spitzer, Spatial distribution of ground beetles (Coleoptera : Carabidae) and moths (Lepidoptera) in the Mrtvy luh bog, Sumava Mts (Central Europe): A test of habitat island community. Biodiversity and Conservation, 2006. 15(1): p. 395-409.

50.       Weking, S., G. Hermann, and T. Fartmann, Effects of mire type, land use and climate on a strongly declining wetland butterfly. Journal of Insect Conservation, 2013. 17(6): p. 1081-1091.

51.       Celik, T. and B. Vres, Microtopography determines the habitat quality of a threatened peatland butterfly at its southern range margin. Journal of Insect Conservation, 2018. 22(5-6): p. 707-720.

52.       Turlure, C., et al., Microclimatic buffering and resource-based habitat in a glacial relict butterfly: significance for conservation under climate change. Global Change Biology, 2010. 16(6): p. 1883-1893.

53.       Dennis, R.L.H., T.G. Shreeve, and H. Van Dyck, Towards a functional resource-based concept for habitat: a butterfly biology viewpoint. Oikos, 2003. 102(2): p. 417-426.

54.       Hanski, I., A PRACTICAL MODEL OF METAPOPULATION DYNAMICS. Journal of Animal Ecology, 1994. 63(1): p. 151-162.

55.       Wahlberg, N., T. Klemetti, and I. Hanski, Dynamic populations in a dynamic landscape: the metapopulation structure of the marsh fritillary butterfly. Ecography, 2002. 25(2): p. 224-232.

56.       Benes, J., et al., Motyli Ceske republiky: Rozsireni a ochrana I. a II. 2002, Praha: Spolecnost pro ochranu motylu. 857.

57.       Bartonova, A., J. Benes, and M. Konvicka, Generalist-specialist continuum and life history traits of Central European butterflies (Lepidoptera) - are we missing a part of the picture? European Journal of Entomology, 2014. 111(4): p. 543-553.

58.       Slancarova, J., et al., Life History Traits Reflect Changes in Mediterranean Butterfly Communities Due to Forest Encroachment. Plos One, 2016. 11(3): p. 18.

59.       Mangels, J., et al., Diversity and trait composition of moths respond to land-use intensification in grasslands: generalists replace specialists. Biodiversity and Conservation, 2017. 26(14): p. 3385-3405.

60.       Potocky, P., et al., Life-history traits of Central European moths: gradients of variation and their association with rarity and threats. Insect Conservation and Diversity, 2018. 11(5): p. 493-505.

61.       Kadlec, T., R. Tropek, and M. Konvicka, Timed surveys and transect walks as comparable methods for monitoring butterflies in small plots. Journal of Insect Conservation, 2012. 16(2): p. 275-280.

62.       Wu, H.T., et al., Biogenic structures of two ant species Formica sanguinea and Lasius flavus altered soil C, N and P distribution in a meadow wetland of the Sanjiang Plain, China. Applied Soil Ecology, 2010. 46(3): p. 321-328.

63.       Brigic, A., et al., Spatial distribution of insect indicator taxa as a basis for peat bog conservation planning. Ecological Indicators, 2017. 80: p. 344-353.

64.       Batzer, D.P. and H.T. Wu, Ecology of Terrestrial Arthropods in Freshwater Wetlands. 2020. p. 101-119.

65.       Bezdeckova, K. and P. Bezdecka, Mravenec raselinny (Formica picea) ve strednich Cechach. Bohemia Centralis, 2010. 30: p. 115-120.

66.       Biström, O. and T. Pajunen, Occurrence of Araneae, Pseudoscorpionida, Opiliones, Diplopoda, Chilopoda and Symphyla in Polytrichum commune and Sphagnum spp. moss stands in two localities in southern Finland. Memoranda Societatis pro Fauna et Flora Fennica, 1989. 65(3): p. 109-128.

67.       Kajak, A., J. Kupryjanowicz, and P. Petrov, Long term changes in spider (Araneae) communities in natural and drained fens in the Biebrza River Valley. Ekologia, 2000. 9: p. 55-64.

68.       Glime, J.M. and J. Lissner, Arthropods: Spiders and Peatlands. Chapt. 7-4, in Bryophyte Ecology, J.M. Glime, Editor. 2013.

69.       Boyce, D.C., A review of the invertebrate assemblage of acid mires. English Nature Report, 2004. 592: p. 16-22.

70.       Nørgaard, E., On the Ecology of Two Lycosid Spiders (Pirata piraticus and Lycosa pullata) from a Danish Sphagnum bog. Oikos, 1951. 3(1): p. 1-21.

71.       Stewart, J.A., Some spiders of Flanders Moss. Forth Naturalist and Historian, 2001. 24: p. 49-56.

72.       Scott, A.G., G.S. Oxford, and P.A. Selden, Epigeic spiders as ecological indicators of conservation value for peat. Biological Conservation, 2006. 127(4): p. 420-428.

73.       Machado, A., An index of naturalness. Journal for Nature Conservation, 2004. 12: p. 95-110.

74.       Harvey, P.R., D.R. Nellist, and M.G. Telfer, Provisional Atlas of British spiders (Arachnida, Araneae). Provisional Atlases. Vol. 1&2. 2002: Centre for Ecology and Hydrology.

75.       Malumbres-Olarte, J., et al., Gauging megadiversity with optimized and standardized sampling protocols: A case for tropical forest spiders. Ecology and Evolution, 2017. 7(2): p. 494-506.

76.       Rusek, J., Biodiversity of Collembola and their functional role in the ecosystem. Biodiversity and Conservation, 1998. 7(9): p. 1207-1219.

77.       Wallwork, J.A., The Distribution and Diversity of Soil Fauna. 08/24 ed. 1976, London: Academic Press. 356.

78.       Tebbe, C., A. Czarnetzki, and T. Thimm, Collembola as a Habitat for Microorganisms. Soil Biology, 2006. 6: p. 133-153.

79.       Xu, G.L., et al., Seasonal Exposure to Drought and Air Warming Affects Soil Collembola and Mites. Plos One, 2012. 7(8).

80.       Sterzynska, M., J. Shrubovych, and I. Kaprus, Effect of hydrologic regime and forest age on Collembola in riparian forests. Applied Soil Ecology, 2014. 75: p. 199-209.

81.       Crossley, D.A. and J.M. Blair, A high efficiency, low-technology tullgren-typ extractor for soil microarthropods. Agriculture Ecosystems & Environment, 1991. 34(1-4): p. 187-192.

82.       Seniczak, A., et al., Seasonal Dynamics of Oribatid Mites (Acari, Oribatida) in a Bog in Poland. Wetlands, 2019. 39(4): p. 853-864.

83.       Neher, D.A., T.R. Weicht, and M.E. Barbercheck, Linking invertebrate communities to decomposition rate and nitrogen availability in pine forest soils. Applied Soil Ecology, 2012. 54: p. 14-23.

84.       Schneider, K., et al., Feeding biology of oribatid mites: A minireview. Phytophaga, 2004. 14: p. 247-256.

85.       Ojala, R. and V. Huhta, Dispersal of microarthropods in forest soil. Pedobiologia, 2001. 45(5): p. 443-450.

86.       Devetter, M. and K. Scholl, Hydrobiont animals in floodplain soil: Are they positively or negatively affected by flooding? Soil Biology & Biochemistry, 2014. 69: p. 393-397.

87.       Hoschitz, M. and R. Kaufmann, Soil nematode communities of Alpine summits-site differentiation and microclimatic influences. Pedobiologia, 2004. 48(4): p. 313-320.

88.       Renco, M. and J. Murin, Soil Nematode Assemblages in Natural European Peatlands of the Horna Orava Protected Landscape Area, Slovakia. Wetlands, 2013. 33(3): p. 459-470.

89.       Meininger, C.A. and P.D. Spatt, VARIATIONS OF TARDIGRADE ASSEMBLAGES IN DUST-IMPACTED ARCTIC MOSSES. Arctic and Alpine Research, 1988. 20(1): p. 24-30.

90.       Gilbert, D., et al., The microbial loop at the surface of a peatland: Structure, function, and impact of nutrient input. Microbial Ecology, 1998. 35(1): p. 83-93.

91.       Yeates, G.W. and W. Foissner, Testate amoebae as predators of nematodes. Biology and Fertility of Soils, 1995. 20(1): p. 1-7.

92.       Jassey, V.E.J., et al., To What Extent Do Food Preferences Explain the Trophic Position of Heterotrophic and Mixotrophic Microbial Consumers in a Sphagnum Peatland? Microbial Ecology, 2013. 66(3): p. 571-580.

93.       Jassey, V.E.J., et al., Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions. Global Change Biology, 2013. 19(3): p. 811-823.

94.       Simova, A., et al., Landslides increased Holocene habitat diversity on a flysch bedrock in the Western Carpathians. Quaternary Science Reviews, 2019. 219: p. 68-83.

95.       Jauhiainen, S., Testacean amoebae in different types of mire following drainage and subsequent restoration. European Journal of Protistology, 2002. 38(1): p. 59-72.

96.       Swindles, G.T., et al., Evaluating the use of dominant microbial consumers (testate amoebae) as indicators of blanket peatland restoration. Ecological Indicators, 2016. 69: p. 318-330.

97.       Secco, E.D., et al., Do testate amoebae communities recover in concordance with vegetation after restoration of drained peatlands? Mires and Peat, 2016. 18.

98.       Creevy, A.L., et al., Testate amoebae as functionally significant bioindicators in forest-to-bog restoration. Ecological Indicators, 2018. 84: p. 274-282.

99.       Booth, R.K., M. Lamentowicz, and D.J. Charman, Preparation and analysis of testate amoebae in peatland paleoenvironmental studies. Mires and Peat, 2010. 7(2): p. 1-7.

100.      Maltby, E. and T. Barker, The Wetlands Handbook. 2009, Chichester: Wiley-Blackwell. 800.